RNN-based Learning of Compact Maps for Efficient Robot Localization

نویسندگان

  • Alexander Förster
  • Alex Graves
  • Jürgen Schmidhuber
چکیده

We describe a new algorithm for robot localization, efficient both in terms of memory and processing time. It transforms a stream of laser range sensor data into a probabilistic calculation of the robot’s position, using a bidirectional Long Short-Term Memory (LSTM) recurrent neural network (RNN) to learn the structure of the environment and to answer queries such as: in which room is the robot? To achieve this, the RNN builds an implicit map of the environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...

متن کامل

Information Technology Effizientes Lernen Metrischer und Topologischer Karten mit Autonomen Servicerobotern Efficiently Learning Metric and Topological Maps with Autonomous Service Robots

Models of the environment are needed for a wide range of robotic applications, from search and rescue to automated vacuum cleaning. Learning maps has therefore been a major research focus in the robotics community over the last decades. In general, one distinguishes between metric and topological maps. Metric maps model the environment based on grids or geometric representations whereas topolog...

متن کامل

Efficiently Learning Metric and Topological Maps with Autonomous Service Robots (Effizientes Lernen metrischer und topologischer Karten mit autonomen Servicerobotern)

Models of the environment are needed for a wide range of robotic applications, from search and rescue to automated vacuum cleaning. Learning maps has therefore been a major research focus in the robotics community over the last decades. In general, one distinguishes between metric and topological maps. Metric maps model the environment based on grids or geometric representations whereas topolog...

متن کامل

A Real-Time Algorithm for Mobile Robot Mapping With Applications to Multi-Robot and 3D Mapping

We present an incremental method for concurrent mapping and localization for mobile robots equipped with 2D laser range finders. The approach uses a fast implementation of scan-matching for mapping, paired with a sample-based probabilistic method for localization. Compact 3D maps are generated using a multi-resolution approach adopted from the computer graphics literature, fed by data from a du...

متن کامل

Reduction of Odometry Error in a two Wheeled Differential Drive Robot (TECHNICAL NOTE)

Pose estimation is one of the vital issues in mobile robot navigation. Odometry data can be fused with absolute position measurements to provide better and more reliable pose estimation. This paper deals with the determination of better relative localization of a two wheeled differential drive robot by means of odometry by considering the influence of parameters namely weight, velocity, wheel p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007